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The spectral decompostion of the Frobenius-Perrou operator of maps 
composed of many tents is determined from symmetry considerations. The 
eigenstates involve Euler as well as Bernoulli polynomials. 
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1. I N T R O D U C T I O N  

Experimental data from chaotic systems, whether obtained from the 
laboratory or computer simulations, are often presented in the form of 
power spectra of correlation functions. From the data various decay 
contributions may be identified. For a model system the decay rates may 
be obtained from the spectrum of the time evolution operator and the 
weights of the contributions may be obtained from the knowledge of the 
eigenstates. 

The time evolution operator for probability densities in chaotic maps 
is known as the Frobenius-Perron operator/11 The spectral decomposition 
of the Frobenius-Perron operator depends on the domain in which it is 
considered to act. ~21 For a class of systems, if the domain is restricted to 
smooth functions, elements of the spectral decomposition are in a 
generalized functional space/2'31 These new decompositions are quite 
natural from a physical point of view because the spectrum then explicitly 
contains the decay rates and the approach to equilibrium of correlations, 
even in systems with reversible trajectory dynamics, is made manifest. 124~ 
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Recently, the authors have introduced some new techniques, ~5~ based 
on symmetry considerations, enabling the construction of spectral decom- 
positions in a much simpler way than previous construction algorithms. 
Here we utilize these techniques to construct the spectral decomposition for 
one-dimensional maps of the unit interval composed of many tents. The 
construction uses the knowledge of the spectral decomposition of the r-adic 
map, which involves Bernoulli polynomials and their duals. It will be seen 
that the spectral decomposition of the tent maps involves both Bernoulli 
polynomials and Euler polynomials along with the appropriate dual states. 

2. I N C O M P L E T E  T E N T  M A P S  

We consider piecewise-linear maps of the unit interval composed of r 
branches with alternating slopes -Fr, each mapping onto the unit interval. 
By convention we take the first branch [corresponding to the interval 
(0, l / r)]  to be of positive slope and we denote the Frobenius-Perron 
operator corresponding to the map as UTr. In this section we consider 
maps composed of an odd number q of branches, such as the three-branch 
map shown in Fig. 1. The tent pattern of the map is then incomplete. We 
determine first the spectral decomposition of the three-branch map from 
which the general result for this class easily follows. 

The Frobenius-Perron operator UT3 acts on a density p(x) as 

X t + l  

I / 3  2/3 I 

T3R(x) = ~  P 

X t 

Fig. 1. The three-branch incomplete tent map. 
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This operator admits polynomial eigenstates, and by considering its matrix 
representation as acting on monomials, it is triangular so the eigenvalues are 
found on the diagonal. Except for the first eigenvalue of 1, corresponding 
to the invariant uniform density, they are found to be twofold degenerate. 
The eigenpolynomials of order 211- 1 and 2n, where n >/1, both have the 
associated eigenvalues of 3-2" 

The operator UT3 satisfies an intertwining relation with the 
Frobenius-Perron operator of the 3-adic map U.~ and the two-branch tent 
map (commonly referred to as "the tent map") U T -  UT2 as 

UT3UT = UTU3 (2.1) 

The Frobenius-Perron operator of the tent map is given by 

1 [ P ( 2 ) +  ( 1 - 2 )  1 UTp(X  ) =. -~ P 

The 3-adic map is a special case of the r-adic map (r being a positive 
integer) which is composed of r linear branches all of slope +r. The 
associated Frobenius-Perron operator Ur is given by 

Urp(X)  = I-7 i=~=0 p - -  

The intertwining relation (2.1) is useful because the spectral decom- 
position of Ur is knownJ 24~ The eigenpolynomials (right eigenstates) are 
the Bernoulli polynomials B,,(x)  defined by the generating function 

pe 'p = ~. B ,,( x ) P" 
e I ' - 1  ,,~=o n l 

The left eigenstates of U,. (right eigenstates of U~*) are the generalized 
functions 

~, , (x )  - 
( _ l ) , , - I  

n! 
[6 c"- l l(x - 1 ) - 61,,- 11(x)] 

These are the duals of the Bernoulli polynomials as 

f]  dx  B,,(x) = .... ~,*(x) d 

where integration with respect to Lebesgue measure over the unit interval 
defines the inner product. The associated eigenvalue of both B,,(x) and 
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B,,(x) is r -" .  The eigenstates of U,. are also eigenstates of the reflection 
operator R defined by Rf(x)-=f(1  - x ) .  This can be seen from the fact that 
R and U,. commute. 

Operating on both sides of (2.1) by an even-order Bernoulli polyno- 
mial B,_,,(x), and using that it is an eigenstate of U3 with eigenvalue 3-z", 
we then obtain 

UT3 UxBz,,(x) = 3 -'-"UTB2,,(x) 

Thus, UvB,_,(x)=Bz,(x/2) is an eigenpolynomial of Ux3 with eigenvalue 
3-2". Since the eigenpolynomial of order 217 - 1 has the same eigenvalue we 
may add any multiple of this lower-order polynomial to B2,,(x/2) to obtain 
different eigenstates of order 2n. 

The intertwining relation (2.1) is not directly useful to obtain the odd- 
order eigenstates because for the odd-order Bernoulli polynomials we have 
U-cB2,,+ ~(x)=0. We may obtain the odd-order eigenstates using that U-r3 
commutes with R. Realizing this tells us that RB2,,(x/2) is also an 
eigenstate of U-r3, with eigenvalue 3-2". Hence any linear combination of 
B2,(x/2) and RBz,,(x/2) is an eigenstate as well. The simultaneous 
eigenstates of two commuting operators form a complete set if the 
operators considered separately admit complete sets of eigenstatesJ 61 
Hence, we may form a complete set of right eigenstates of UT3 by making 
them a complete set of eigenstates of R also. Such states may be constructed 
using the projection operators P+ - ( 1  _+ R)/2. Thus, out of all the possible 
linear combinations mentioned above, we choose 

and 

_ = 2 B2,,(.x ) 

( 2 )  = - n 2  E2,,_ ~(x) P -  92, - 2, 

where E,_,,_~(x) is the Euler polynomial of order 2 n - I .  (For the even- 
order states n starts at 0 and for the odd-order states at 1.) The Euler poly- 
nomials are defined by the generating function ~7~ 

2 e  -'p ~ E,,( x ) ,, 

e p + 1 -,,~=o n---~-, p 

For convenience we choose the coefficient of the highest power of x in the 
eigenpolynomial to be 1. The eigenpolynomials of the incomplete tent map 
Uxs are thus taken as I2,,(x)~ B2,,(x) and Iz,,_ i ( x ) -  E2,_ ,(x). 
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We have already mentioned the states, B,,(x) which form an ortho- 
normal set with the Bernoulli polynomials. The dual states of the full set 
of Euler polynomials may be determined from integration over the unit 
interval with the generating function. They are 

E,,(x) ( -  1)" = [6~" ' (x-  1 ) + O~"~(x)] 
2(n!) 

The even-order states B2,,(x) are all orthogonal to the odd-order Euler 
polynomials and the odd-order states /~2,,-i(x) are all orthogonal to the 
even-order Bernoulli polynomials. Thus, the complete set of orthonormal 
duals is given by I,_,,(x) - B2,,(x) and 72,_ t(x) -= E2,,-t(x) �9 

We may follow in parallel all of the above arguments to obtain the 
spectral decomposition of any incomplete tent map. For the incomplete 
tent map with q branches the eigenvalues are twofold degenerate, with the 
eigenvalue q-2,, corresponding to both the order-2n and order - (2n-1)  
eigenpolynomials. An intertwining relation like (2.1) but with the q-adic 
map is satisfied for tent maps with q branches, and the Frobenius-Perron 
operator commutes with R, so we obtain the same eigenstates as given 
above for the three-branch case. 

As mentioned, the eigenstates of Uvq obtained above are eigenstates of 
R as well. Thus, they are also eigenstates of RUvq= UTqR, which is the 
Frobenius-Perron operator corresponding to an incomplete tent map with 
the first branch having negative slope. The odd-order eigenstates I2,,_ ~(x) 
here have the corresponding eigenvalues _q-2,,,  since RI2,,_~(x)= 
--I2n_ l(X). The even-order eigenstates I2.(X ) have the same eigenvalues as 
given above, since RI2,,(x)=I2,(x) Hence, in these maps there are no 
repeated eigenvalues. 

We note that the above results for the eigenpolynomials of an incom- 
plete tent map may also be obtained by considering symmetry transforma- 
tions of the multiplication theorems ~7~ for both the Bernoulli and Euler 
polynomials. 

3. C O M P L E T E  T E N T  M A P S  

We now consider maps composed of an even number p of linear 
branches so that the tent pattern of the map is complete. Figure 2 shows 
a six-branch map from this class. The eigenvalues of the polynomial 
eigenstates may be obtained as before by considering the Frobenius-Perron 
operator acting on monomials. Here the even-order eigenstates have the 
associated eigenvalues ofp  -2'' and the odd-order eigenstates all have eigen- 
value O. 



Xt+ l  
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X t 

Fig. 2. The six-branch complete tent map. 

An intertwining relation like (2.1) but with the p-adic map still holds, 
and following the same steps below that equation, we find that the even- 
order eigenpolynomials of Uxp are proportional  to B2,(x/2). In contrast to 
the incomplete tent maps, UTp does not commute with R. In fact, we have 

UTr R = UTp 

which shows that U-rt, P -  = 0. Thus, any odd function (with respect to the 
midpoint of the unit interval) is an eigenstate of UTp with eigenvalue 0. To 
form a polynomial basis, we choose here the odd-order Euler polynomials. 
Thus the even-order eigenpolynomials of any complete tent map are 
C2,,(x)=B,_,,(x/2) and the odd-order eigenpolynomials are taken as 
C_,,,_ ~(x) = E, , ,_  t(x). 

The dual eigenstates C_,,,(x) of the even-order eigenpolynomials may 
be obtained in a straightforward way by considering the simplest case of 
the complete tent map with two branches. These states must be left 
eigenstates of UT so that 

C 2 , , ( x )  UT ... .  ~ = 2 - C2,,(x) (3.1) 

Also, they should be or thonormal  with C2m(X)= B...(x/2) as 

dx C'2,,(x) B2,,, ~ = ~ ..... (3.2) 



Spectral Decomposition of Tent Maps 275 

Acting with (3.1) on B2,,,(x) and then using that UTB2,,,(x)= B2,,,(x/2) gives 

dx C,_,,(x) B2,,, - =  dx 2 -'-"C2,(x) B,_,,,(x) 

The left-hand side here is given from (3.2) and so 2--'"C_,,,(x) is the dual 
of B,_,,,(x), i.e., 

C_,,,(x) = 22"/~_~,,(x) 

As pointed out in the previous section, these states are orthogonal to all of 
the odd-order Euler polynomials. The states /7:2, fix), while forming an 
orthonormal set with the odd-order Euler polynomials, are not orthogonal 
to the even-order eigenstates C2,,(x). To determine the correct duals here of 
the odd-order right eigenstates we utilize the completeness of the spectral 
decomposition of UT SO that 

m = 0 

The map corresponding to the Frobenius-Perron operator R UTr starts 
with a branch of negative slope. The eigenvalues are the same as for UTr 
and the eigenstates are just R times the eigenstates given above. 

4. C O N C L U D I N G  R E M A R K S  

We have shown that the spectral decomposition of the Frobenius- 
Perron operator of tent maps may be easily determined by intertwining it 
with the r-adic map, for which the spectral decomposition is known, and 
utilizing symmetry considerations. Some of the results given here for tent 
maps hold for the general class of maps of the unit interval with piecewise- 
linear branches, each branch mapping onto the unit interval and all 
branches having the same absolute value of the slope. The P+ projections 
of the even-order eigenpolynomials are always proportional to B2,(x). 
Also, the even-order left eigenstates themselves are proportional to B,_,,(x). 
These results for the general class may be obtained from intertwining 
relations with Pu 
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